4 research outputs found

    Nanotube-Based NEMS: Control vs. Thermodynamic Fluctuations

    Full text link
    Multi-scale simulations of nanotube-based nanoelectromechanical systems (NEMS) controlled by a nonuniform electric field are performed by an example of a gigahertz oscillator. Using molecular dynamics simulations, we obtain the friction coefficients and characteristics of the thermal noise associated with the relative motion of the nanotube walls. These results are used in a phenomenological one-dimensional oscillator model. The analysis based both on this model and the Fokker-Planck equation for the oscillation energy distribution function shows how thermodynamic fluctuations restrict the possibility of controlling NEMS operation for systems of small sizes. The parameters of the force for which control of the oscillator operation is possible are determined.Comment: 40 pages, 12 figure

    Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Get PDF
    The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8) nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.Comment: 9 pages, 6 figures, 1 tabl
    corecore